AACREA CRED, Columbia University Universidad de Miami Proyecto CLIMA

Teoría Conductual de la Toma de Decisiones: Cómo se Toman Decisiones y Formulan Juicios bajo Condiciones de Incertidumbre

Lección 7

Utilidad Esperada, Utilidad Corregida por Lamento, y Teoría de la Perspectiva en Decisiones Agrícolas

Elke Weber - Columbia University

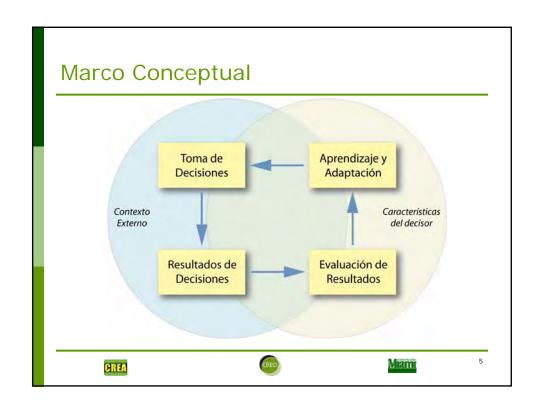
Colaboración entre AACREA, CRED, Proyecto CLIMA

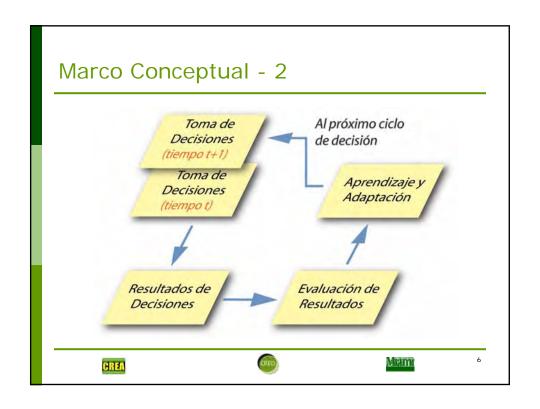
- □ Problema social considerado:
 - Manejo sustentable y adaptativo de la producción agrícola en un ambiente natural y social complejo e incierto
- Respuestas a problemas sociales complejos requieren:
 - Investigación multidisciplinaria (o, idealmente, interdisciplinaria)
 - Consideración/modelación de múltiples componentes
 - Combinación de modelos de componentes
 - A menudo cruzando diferentes niveles de análisis

CREA

- Misión
 - Investigar procesos de decisión detrás de la adaptación a la incertidumbre y el cambio, particularmente incertidumbre y cambio relacionado con variabilidad y cambio climático
- □ Coordina e integra 20+ proyectos conducidos por un equipo interdisciplinario de 24 investigadores
 - Sede en Universidad de Columbia (Nueva York)
 - Proyectos enfocados en EEUU, Argentina, Brasil, Europa, África, Medio Oriente
- Combina estudios de laboratorio con trabajo de campo enfocado sobre tomadores de decisiones en su ambiente natural
 - Agricultores, administradores de recursos hídricos, formuladores de políticas

3


Preguntas Específicas Atacadas


- Como conceptualizar y modelar la adaptación a un entorno incierto y, posiblemente, no estacionario?
 - A nivel de individuos, aprendizaje iterativo basado en feedback
 - Modelos psicológicos de aprendizaje y toma de decisiones bajo incertidumbre

CREA

Miami

Más Preguntas Específicas

- A nivel de individuos, aprendizaje iterativo basado en feedback
 - Modelos psicológicos de aprendizaje y toma de decisiones bajo incertidumbre
 - Cuáles son las metas, aspiraciones y objetivos de las decisiones de los productores (funciones objetivo)?
 - Hay diferencias entre individuos en las funciones objetivo?
 - Estas diferencias motivan distintos comportamientos adaptativos?
 - Estas diferencias motivan diferentes actitudes/reacciones ante innovaciones tecnológicas?
- A un nivel más agregado (grupos sociales, comunidades) aparecen otros mecanismos de aprendizaje y comunicación
 - Redes sociales

7

Funciones Objetivo Candidatas

- Maximización de Utilidad Esperada (UE)
 - Considera diferencias en:
 - Aversión al riesgo
 - Riqueza o patrimonio
- Maximización de UE ajustada por lamento
 - Comparación de resultados obtenidos con los resultados de otras acciones posibles
 - Generalmente involucra comparaciones sociales ("como le fue a mi vecino?")
 - Requiere información sobre los resultados de acciones alternativas
- Maximización de función de valor de Teoría de la Perspectiva
 - Punto de referencia
 - Aversión al riesgo
 - Aversión a las pérdidas

CREA

Espectro de Manejos Viables (64)

	Manejo						PROPIETARI OS Resultado economico (\$ ha ⁻¹)		ARRENDATARIO S Resultado economico (\$ ha ⁻¹)	
	Genotipo	Fecha de siembr a	Fertiliz acion (kg N ha ⁻¹)	Espaci o entre hileras (m)	Agua disponible a la siembra (%)	N disponible a la siembra (kg N ha-1)	Media	S.D.	Media	S.D.
Maiz										
Ma21	DK752	Sep 15	100	0.70	100	70	113.2	106.8	6.8	157.7
Ma23		Oct 15	75				116.5	84.1	5.8	128.6
Ma24		Oct 15	100				116.3	90.1	9.8	135.8
Soja de pri	imera									
Soy14	DM4800	Oct 25	0	0.52	100	50	188.1	60.7	69.4	89.0
Trigo /Soj	a									
SW19	Scorpion & DM4800	Jun 10	40	0.19 0.52	90	60	162.1	83.4	62.3	121.7
SW20		Jun 10	60				167.3	84.7	72.3	122.5
SW21		Jun 10	80				168.8	85.0	77.6	122.0

Simulaciones

CREA

- □ Simulación de rendimientos (modelos agronómicos)
 - Modelos en paquete DSSAT
 - CERES para trigo y maíz
 - CROPGRO para soja
 - Para cada manejo, se simularon rendimientos para 70 ciclos usando datos históricos de clima 1931-2000
- Simulación de resultados económicos
 - Campo hipotético de 600 ha en Pergamino
 - Resultados económicos: diferencia entre ingresos y costos
 - Ingresos: rendimiento simulado por precio producto
 - Cuatro clases de costos: (1) fijos (independientes de rendimiento), (2) variables (función de rendimiento), (3) estructurales (solo para propietarios) y (4) impuesto a las ganancias

CREA

Miami

Mizami

Optimización

- La variable a optimizar es el vector que indica la proporción de área asignada a cada manejo
- $\vec{x} = (x_1,, x_{64})$
- Optimización de área/manejo para tres funciones objetivo
- Software usado: GAMS

CREA

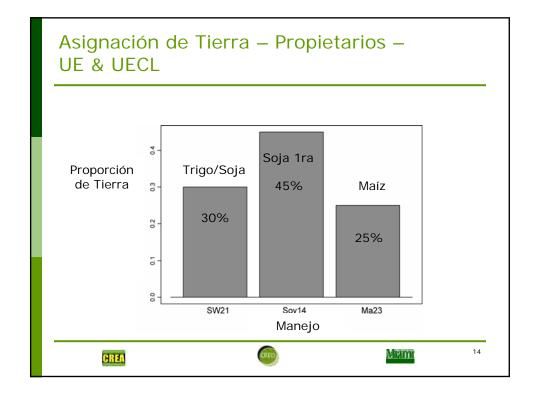
11

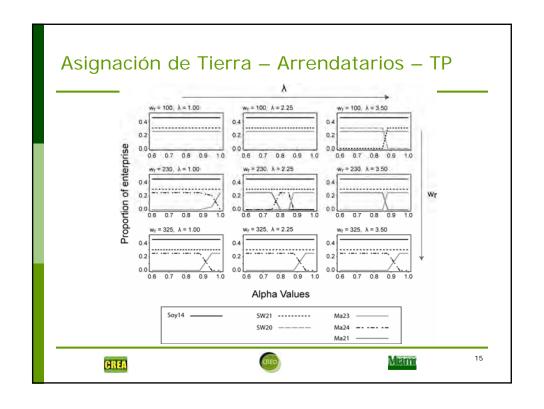
Restricciones

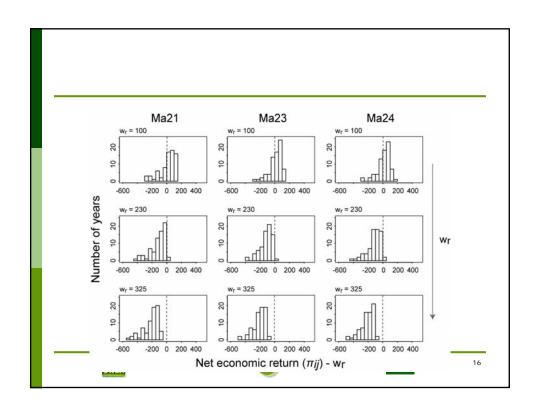
- □ Propietarios: AACREA recomienda una rotación de 1/3 maíz, 1/3 soja y 1/3 trigo/soja
 - Para dar mas flexibilidad a los productores se usaron dos restricciones:
 - Ningún cultivo puede ocupar menos del 25% o mas del 45% del área total
- □ Arrendatarios: No hay restricciones
 - Toda el área se puede asignar a un solo cultivo/manejo

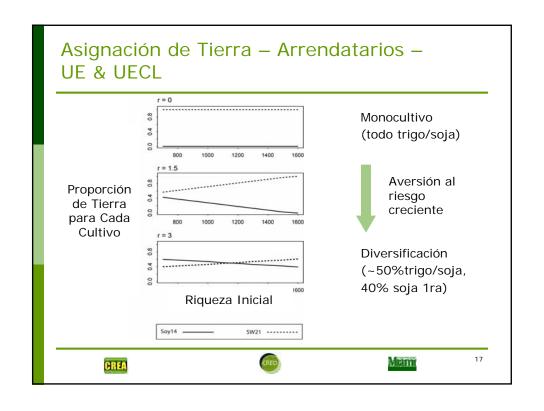
CREA

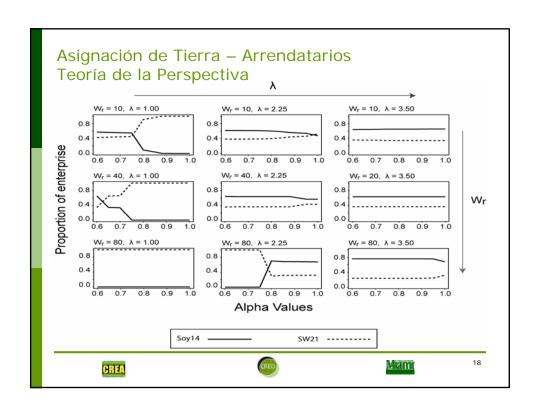
Miami


Resultados


- □ Las restricciones importan!
 - Grandes diferencias en la asignación de tierra entre propietarios y arrendatarios
- No se detectó efecto de lamento anticipado
- Efectos importantes del punto de referencia y aversión a las pérdidas
 - Interacción entre punto de referencia y aversión al riesgo (averso al riesgo para las ganancias, afín al riesgo para pérdidas)


CREA





Pasos Futuros

- Patrones diferentes de asignación de tierras para cada función objetivo (FO) y su espacio de parámetros
 - Usar datos históricos sobre asignación de tierras (de AACREA) para estimar parámetros de funciones objetivo
 - Estimar parámetros de funciones objetivo usando experimentos de decisión realistas y loterías
 - Cuantos tipos diferentes de productor hay?
 - Las funciones objetivo y parámetros identificados coinciden para los usos de la tierra y los resultados de las loterías?

19

Agregación

- Usar resultados de segmentación de productores como entrada a modelos basados en agentes
- Para cada agente, hacer asunciones sobre:
 - Evaluación de resultados obtenidos (niveles de referencia, aversión a las pérdidas)
 - Mecanismos de aprendizaje
 - Experiencia propia
 - Experiencia de otros
 - Cuales otros?
- Modelo se puede utilizar para evaluar
 - Proporción de tipos de agentes (propietarios, arrendatarios)
 - Introducción de nuevas tecnologías

Valor económico de los pronósticos climáticos

Efecto de diferentes funciones objetivo y parámetros

- Ir más allá de Utilidad Esperada
- Efecto de lamento posiblemente m á s importante aquí
- Efecto de habilidad de un pronóstico climático
- Las diferencias pueden detectarse en
 - Resultados económicos con y sin pronóstico
 - Recomendaciones sobre "buenas prácticas"

21

Resultados Preliminares sobre Valor de Información

- □ Las diferentes funciones objetivo no cambian mucho el valor de la información, pero cambian las practicas recomendadas
 - Aumento de productividad del 5-7%
- Pronósticos con poca habilidad pueden resultar en valores negativos del valor de la información

Mizimi

Heterogeneidad en Tomadores de Decisiones

- □ Tradicionalmente basada en:
 - Variables demográficas (edad, educación)
 - Variables económicas (ingreso, tamaño del campo)
- □ Dimensiones psicológicas:
 - Metas / objetivos
 - Rasgos de personalidad (aversión a las pérdidas o al riesgo)

