AACREA CRED, Columbia University, Elke Weber Proyecto CLIMA

Behavioral Decision Theory:

How Judgments and Decisions are Made Under Uncertainty

Lesson 2

Normative and Prescriptive Decision Models

Not to be used without the expressed permission of the author. © Elke Weber, 2007

Types of Models

Normative

- A standard that defines "best" way of achieving some goal
 - Goals include maximization, optimization, consistency across situations and contexts

Descriptive

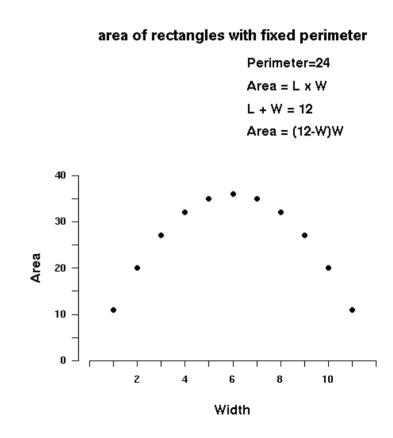
- Describe how people normally think and decide
- Often expressed in terms of heuristics/simple rules
- Can also describe regularities of behavior mathematically

Prescriptive

- Prescribe how we "ought" to think or act
- Often derive from normative models, but can also involve heuristics/shortcuts
- Successful prescriptive models will also incorporate lessons from descriptive models

Not to be used without the expressed permission of the author. © Elke Weber, 2007

Decision Making as Constrained Optimization


Specification of Objective Function Objective function specifies *decision rule*

Identification of Constraints

- Physical (engineering) models have physical constraints
- Normative decision models have logic and consistency constraints (axioms)
- Descriptive decision models have cognitive and affective constraints

Example of a physical constraint optimization problem

 Maximize the rectangular area that can be enclosed by 24 feet of fencing material

"A Decision Theorist Reads the Newspaper"

- New York Times, Sept. 3, 2006 story on air traffic controller staffing decisions made by Federal Aviation Agency and airports
 - Conflicting goals
 - Maximize public safety
 - Minimize expenses
 - Optimization involves specification of a tradeoff factor
 - Relative importance of safety vs. costs
 - Adjustments of relative importance weights with feedback
 - e.g., accidents that involve loss of lives, like the crash of a Boing737 of the Brazilian airline Gol Transportes Aereos, on September 29, 2006, on route from Manaus to Brasilia, causing 154 fatalities, no survivors (after mid-air collision with business jet which landed safely with some damage to the aircraft)

Where do decision rules come from?

□ They are *learned*

- by experience (induction)
 - "learning by getting hurt"
- by observing others
 - "learning by watching"
- by explicit instruction
 - "learning by being told"

□ They are *deduced*

using logic and mathematics

Historical Example: The St. Petersburg Paradox

G Game:

You get to toss a fair coin for as many times as you need to score a "head" (H)

n is the toss on which the first H appears: $1 \le n \le n$ infinity

D Payoff:

- □ You get \$2 ⁿ
 - If you score H on toss 1, you get \$2
 - If you score H on toss 2, you get \$4
 - If you score H on toss 3, you get \$8
 - If you score H on toss 4, you get \$16, etc.

D Question:

- How much are you willing to pay me in order to play this game for one round?
- How do you decide???

Expected Value of one Round of the Game

How much do you think you can expect to win in one round of this game?

$$\Box EV(X) = \Sigma_i (x_i p(x_i)) = ?$$

- Is EV a good decision rule for how much to pay for this game?
 - No!
 - Instead, Bernoulli (1834) suggested that we compute expected utility of outcomes, where utility is decreasing over amount
 Logarithmic function
 - Not to be used without the expressed permission of the author. © Elke Weber, 2007

D Expected Utility of Game

- Daniel Bernoulli (1739)
 - Utility of wealth is not linear, but logarithmic
 - $\square EU(X) = \sum_{i} \{u(x_i) p(x_i)\}$

Other decision rules

Minimum return (pessimist) rule:

 pay no more than you can expect to get back in the worst case

Expectation heuristic (Treisman, 1986):

 figure on what trial you can expect to get the first H and pay no more than you will get on that trial

Examples where EV is a good decision rule

Pricing insurance premiums

Actuaries are experts at getting the relevant information that goes into calculating the expected value of a particular policy

Testing whether slot machines follow state laws about required payout

Expected Utility Theory

- Generally considered best normative "objective function" since its axiomatization by von Neumann & Morgenstern (1947)
 - Rationality axioms seem reasonable and desirable
 - EU maximization follows (deductively) from axioms and does not depend on any "long-run" argument

Expected-Utility Axioms (Von Neumann & Morgenstern, 1947)

 Connectedness x>=y or y>=x
 Transitivity If x>=y and y>=z, then x>=z
 Substitution Axiom or Sure-thing principle If x>=y, then (x,p,z) >= (y,p,z) for all p and z

 If you "buy into" all axioms, then you will choose X over Y
 if and only if EU(X) > EU(Y), where EU(X) = Σ_i {u(x_i) p(x_i)} and EU(Y) = Σ_i {u(y_i) p(y_i)}

Discounted Utility Model

- For outcomes that occur not now, but later in time, utility of the outcome is discounted by a factor d
 - Discount factor d indicates how much a dollar received now would be worth if it is received in a year
 - d=1 means that there is no discounting: one dollar in a year is valued the same now as a dollar now
 - d=.50 means that there is some discouting: one dollar in a year is equivalent to receiving 50 cents now

Decision Analysis as a Way to Implement EU Maximization

Structuring of the decision

- Decision tree
 - Action nodes
 - Chance nodes
 - Probabilities need to be assessed
 - Utilities of component dimensions and tradeoff coefficients need to be assessed

■ How to get those values?

- Direct ways
 - Ask decision maker or experts directly
 - "how likely is given event?" (absolute judgment)
 - "how useful/valuable is given outcome?" (relative judgment)
- Indirect ways
 - From logic or past experience
 - Ask decision maker about hypothetical decisions ("standard gambles")
 - Work backwards from choice to determine underlying utilities

	States of nature		•
	God exists	God does not exist	
	р	1- p	
Action 1: "Believe"	Utility = + ∞ (infinitely positive)	Utility = - e (very small negative)	$EU("believe") = \infty$
Action 2: "Don't believe"	Utility = - ∞ (infinitely negative)	Utility = + e (very small positive)	EU("don't believe) = - ∞
$p \qquad \text{God exists (EU = + ∞; very good consequences)}$ believe $1-p \qquad \text{God doesn't exists (small negative)}$			
don't $ext{believe}$ p God exists (EU = - ∞ ; very bad consequences)			
1- p God doesn't exists (small negative)			small negative)

Therefore, according to Pascal, believing in God is a dominating alternative if you want to maximize expected utility!

What do normative/prescriptive models provide?

- Consistency in choices
- Structure for decision making process
- **D** Transparency of reasons for choice
- □ Justifiability
- **u** "Education" of other choice processes

Multi-Attribute Utility Theory (MAUT)

Model of riskless choice

Choice of consumer products, restaurants, etc.

Need to specify

- Dimensions of choice alternatives that enter into decision
- Value of each alternative on those dimensions
- Importance weights of dimensions given ranges (acceptable tradeoff)

Tradeoffs

- Willingness to interchange x units of Dimension1 for y units of Dimension 2
- Computer programs can help you with utility assessment and tradeoff assessment

Renting Land Example

MAU(Rental) = b_w u(Price/ht) + b_s u(Payment Option) + b_l u(Soil Quality)

u(.) are the utility functions on individual rental attributesb's are the importance weights of attributes

Possible Interactions

Utility Elicitation Method

"standard gamble" methods

- using certainty equivalents
 - Compare lottery against sure thing of equal EV and adjust sure thing value until two options equally valued
- use probability equivalents
 - Compare two lotteries and adjust one probability level until two options equally valued
- why would elicitation method make a difference?
 - "Stay tuned" for prospect theory and certainty effect